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Abstract

Stability analysis algorithms coupled with a robust steady state solver are used to understand the behavior of the 2D
model problem of thermal convection in a 8 : 1 differentially heated cavity. The system is discretized using a Galerkin=Least
Squares Finite Element formulation, and solved to steady state on parallel computers using a fully coupled Newton method
and iterative linear solvers. An eigenvalue capability is used to probe the stability of the solutions, and the neutral stability
curves are tracked directly using a Hopf tracking algorithm.
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1. Introduction

This manuscript presents a preliminary computational
analysis of a model problem of confined thermal convec-
tion flow in an 8 : 1 enclosure. The computational method
employs a robust steady state solver for the nonlinear
systems, continuation methods for tracking solutions, and
linear stability analysis capabilities. The fluid flow equa-
tions are discretized using the MPSalsa unstructured grid
finite element code, which has been developed for robust
steady state solves on distributed memory parallel comput-
ers [1–4]. A linear stability analysis capability has been
added to MPSalsa by interfacing with the ARPACK eigen-
solver. The critical value of the Rayleigh Ra number is
located (for a given mesh) by incrementing the parame-
ter value, calculating a steady state solution, calculating
a handful of rightmost eigenvalues, and finding where
the rightmost eigenvalues have positive real parts. In this
problem, the first modes to cross the imaginary axis with
increasing Ra are a imaginary conjugate pair indicating
a Hopf bifurcation. An algorithm for directly calculating
Hopf bifurcations, which has recently been developed and
interfaced with the MPSalsa code, is then used to converge
directly to the bifurcation point. Continuation of the Hopf
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point with respect to a second parameter traces neutral
stability curves and provides insight into the structures of
solution branches and the behavior of the system.

2. Numerical methods overview

2.1. Galerkin=Least-Squares Finite Element formulation

The MPSalsa code developed at Sandia National Labs
uses an unstructured grid finite element formulation. The
governing transport PDEs describing fluid flow and thermal
energy transfer are presented in Table 1 in residual form.
The continuous problem, defined by the transport equa-
tions, is approximated by a Galerkin Least Squares formu-
lation [5–7]. This formulation allows for equal order inter-
polation of pressure and velocity (without spurious pressure
solutions), for stabilization of highly convected flows and
for a discontinuity capturing operator that smooths oscilla-
tion in the vicinity of large gradients. The resulting GLS
equations are shown in Table 2.

The equations are solved to state using a fully coupled
inexact Newton method [8,9] and robust parallel iterative
linear solvers. A distributed memory parallel implemen-
tation and domain decomposition preconditioners enable
solutions of problems of order one million unknowns [10].
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Table 1
Governing transport PDEs

Momentum Rm D ²
@u
@t

C ².u Ð ru/ � r Ð T � ²g

Total mass RP D @²

@t
C r Ð .²u/

Thermal energy RT D ² OC p

�
@T

@t
C u Ð rT

½
C r Ð qc � � � PQ C

NsX
kD1

jk Ð OC p;krT �
NsX

kD1

hk Wk P!k C r Ð qr

Table 2
GLS formulation of transport PDEs

Momentum Fm;i D
Z
Ω

ΦRm;i dΩ C
Z
Ωe

²−m.u Ð rΦ/Rm;i dΩ C
Z
Ωe

²−c[rΦ]i RP dΩ C
Z
Ωe

¹m;i rΦ Ð Gcrui dΩ

Total mass FP D
Z
Ω

ΦRP dΩ C
Z
Ωe

.²−m rΦ Ð Rm/ dΩ

Thermal energy FT D
Z
Ω

ΦRT dΩ C
Z
Ωe

² OC p−T .u Ð rΦ/RT dΩ C
Z
Ωe

¹T rΦ Ð GcrT dΩ

2.2. Linear stability analysis algorithms

Having a fully assembled Jacobian matrix and robust
linear solvers enables the use of stability analysis tools.
Details relating to the methods and parallel implementation
of the linear stability analysis algorithms can be found
in [11–13]. The analysis begins at a given steady state
solution point. A normal mode linear stability analysis pro-
duces a linearization of the evolution equations around this
steady state solution and produces a generalized eigenvalue
problem of the form

Jz D ½Mz; (1)

where J is the Jacobian matrix, M is the mass matrix (i.e.
coefficient matrix of time derivative terms), z is an eigen-
vector (generally complex), and ½ its associated eigenvalue
(also complex). A Cayley transformation, which includes
two adjustable real parameters, ¦ and ¼, is used to refor-
mulate the generalized eigenvalue problem into an ordinary
eigenvalue problem for the transformed eigenvalues � :

.J � ¦ M/�1.J � ¼M/z D � z: (2)

A simple relationship exists between the transformed
and original eigenvalues, � D .½�¼/=.½�¦/. Appropriate
choices of ¦ and ¼ are made so that the eigenvalues of
interest (those ½ with largest real part) are mapped to large
� .

The eigenvalue problem defined in Eq. (2) is solved
using Arnoldi’s method with a version of the P_ARPACK
software [14,15] modified to perform the Cayley transfor-
mation.

2.3. Bifurcation analysis algorithm

An Newton algorithm for directly locating and track-
ing a Hopf bifurcation has been implemented as part of
the LOCA library at Sandia National Labs. A thorough
treatment of bifurcation tracking algorithms has recently
been published [16]. At a Hopf bifurcation, one complex
conjugate pair of eigenvalues of Eq. (1) is pure imaginary
(i.e. ½ D š!�), and we use this fact to directly calculate
the bifurcation. In real arithmetic, this leads to a system of
system of 3Nx C 2 unknowns (x , y, z, ! and p). Here Nx

is the length of x (and the order of J), while y and z are
vectors (of length Nx ) containing the real and imaginary
parts of the eigenvector. The 3Nx C 2 equations specifying
the Hopf bifurcation are then,

R D 0

Jy C !Mz D 0

Jz � !My D 0

l t y D 1

l t z D 0

: (3)

The first vector equation requires a steady state solution
(where R.x; p/ is the vector of residuals), the next two
vector equations specify that a purely imaginary eigenvalue
exists, and the last two scalar equations are used to set the
length and phase of the eigenvector y C �z.

These equations are solved using a Newton method. A
block elimination (or bordering) algorithm is used at each
Newton step, this requires two linear solves of the matrix

J and three solves of the matrix
�

J !M

�!M J

½
: This matrix is
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solved using a novel implementation for solving complex
matrices with an existing real-valued linear solver [17]. The
numerical difficulty in solving for the Hopf bifurcation is
in using an iterative solver, which is singular at the Hopf
point. However, our initial experiences indicate that the
iterative solvers work well unless more than four digits of
accuracy is requested.

3. Application of scalable stability analysis

Preliminary results are shown for studying bifurcations
in the thermal cavity problem. A highly graded mesh of
80 ð 180 bilinear finite elements was used for these cal-
culations. The problem of 58 644 unknowns was solved
in parallel on 24 333 Mhz Pentium processors of the
Sandia-Intel Tflop machine (ASCI Red). A typical matrix
fill requires 0.35 s and an iterative matrix solve (using a
domain decomposition preconditioner with overlap and a
GMRES solver) about 15 s, and 3–6 Newton iterations (1–
2 min) were sufficient to converge to a steady state using
a guess from a nearby parameter value. Fig. 1 shows the
evolution of the three rightmost eigenvalues as a function of
the Rayleigh number. Two Hopf bifurcations are detected,
the first is a symmetric mode near Ra D 3:61 ð 105 and
a second skew symmetric mode near Ra D 3:86 ð 105.
Because of the large imaginary parts, an Arnoldi space of
180 was needed to converge the first several eigenvalues
using Cayley parameters of ¦ D 2000 and ¼ D 5000.
An eigensolve required about 30 min. While we believe
the nonlinear solver and the eigensolver are converged to
3 or more digits, the calculation is not converged with
mesh spacing. Mesh resolution studies will soon be un-

Fig. 1. A plot showing the movement of the three leading
eigenvalues as a function of the Rayleigh number shows two
Hopf bifurcations, the first occurring near Ra D 3:61 ð 105. The
mesh of 58 644 unknowns requires 1–2 min for a steady state
solve and about 30 min for an eigenvalue calculation on 24
processors of the Sandia-Intel Tflop (ASCI Red) machine. The
curve labeled Odd has symmetric (odd) eigenfunctions, and the
curve labeled Even has skew symmetric eigenfunctions.

Fig. 2. Three streamline plots are shown: the first is the solution
at the first Hopf bifurcation at Ra D 3:61 ð 105, the second is
the symmetric eigenfunction at that point, and the third is the
skew symmetric eigenfunction at the second Hopf bifurcation at
Ra D 3:86 ð 105.

dertaken to investigate the apparent discrepancy between
our bifurcation point at Ra D 3:61 ð 105 and the value of
Ra D 3:1 ð 105 found in previous work.

Three streamline plots are shown in Fig. 2: the solution
at the bifurcation point, the symmetric instability at this
point, and the skew symmetric instability at the second
Hopf bifurcation.

The Hopf bifurcation tracking algorithm was run using
results from the eigenvalue calculation as initial guesses,
the results of which are shown in Fig. 3. To calculate
a Hopf bifurcation after taking a step in Ra from another
converged solution required about 30 min. Once started, the
curves were traced automatically. The two bifurcations seen
in Fig. 1 were initially tracked, and it was found that the
symmetric bifurcation (labeled Odd(8)) always occurs at
lower parameter values than the skew symmetric (Even(8)).
Eigenvalue calculations at aspect ratios of 7.0 and 9.0
revealed that other modes had overtaken these modes.
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Fig. 3. Neutral stability curves showing the locus of Hopf bi-
furcations for a range of aspect ratios, calculated directly using
the Hopf tracking algorithm. The destabilizing mode at an aspect
ratio of 8 is no longer the destabilizing mode at aspect ratios
below 7.4 or above 9.6.

Tracking the locus of neutral stability points of these two
symmetric modes (labeled Even(7) and (Even(9)) show
how the destabilizing mode transitions from the Even(7) to
the Odd(8) to the Even(9) mode. The two transition points
(near aspect ratios of 7.4 and 8.6) are points where two
Hopf bifurcations occur simultaneously. Chaotic behavior
exists in the neighborhood of such a point.

4. Conclusions

Stability analysis algorithms have been used to locate
the Hopf bifurcations where 2D Boussinesq flow in a
thermal cavity goes unstable. Steady state solutions are
solved for directly using a fully-coupled Newton method
on a parallel computer. An eigenvalue capability is used
to initially locate the bifurcations, and a Hopf tracking
algorithm is used to track out the neutral stability curves as
a function of the aspect ratio. Two double Hopf bifurcations
are found to exist nearby in parameter space. Future work
will include mesh resolution studies, and may include
periodic orbit tracking or 3D calculations.
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